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Abstract

In this article, we propose a new class of finite volume schemes of arbitrary accuracy in space and time for systems of
hyperbolic balance laws with stiff source terms. The new class of schemes is based on a three stage procedure. First a high-
order WENO reconstruction procedure is applied to the cell averages at the current time level. Second, the temporal evo-
lution of the reconstruction polynomials is computed locally inside each cell using the governing equations. In the original
ENO scheme of Harten et al. and in the ADER schemes of Titarev and Toro, this time evolution is achieved via a Taylor
series expansion where the time derivatives are computed by repeated differentiation of the governing PDE with respect to
space and time, i.e. by applying the so-called Cauchy–Kovalewski procedure. However, this approach is not able to handle
stiff source terms. Therefore, we present a new strategy that only replaces the Cauchy–Kovalewski procedure compared to
the previously mentioned schemes. For the time-evolution part of the algorithm, we introduce a local space–time discon-
tinuous Galerkin (DG) finite element scheme that is able to handle also stiff source terms. This step is the only part of the
algorithm which is locally implicit. The third and last step of the proposed ADER finite volume schemes consists of the
standard explicit space–time integration over each control volume, using the local space–time DG solutions at the Gauss-
ian integration points for the intercell fluxes and for the space–time integral over the source term. We will show numerical
convergence studies for nonlinear systems in one space dimension with both non-stiff and with very stiff source terms up to
sixth order of accuracy in space and time. The application of the new method to a large set of different test cases is shown,
in particular the stiff scalar model problem of LeVeque and Yee [R.J. LeVeque, H.C. Yee, A study of numerical methods
for hyperbolic conservation laws with stiff source terms, Journal of Computational Physics 86 (1) (1990) 187–210], the
relaxation system of Jin and Xin [S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space
dimensions, Communications on Pure and Applied Mathematics 48 (1995) 235–277] and the full compressible Euler equa-
tions with stiff friction source terms.
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1. Introduction

In this paper, we are concerned with solving numerically one-dimensional hyperbolic systems of balance

laws (SBL), namely
o

ot
uþ o

ox
fðuÞ ¼ S u; x; tð Þ; ð1Þ
where u ¼ uðx; tÞ is the conservative state, fðuÞ is the flux and Sðu; x; tÞ is the source term. The homogeneous
system associated to (1) is the following hyperbolic system of conservation laws (SCL):
o

ot
uþ o

ox
fðuÞ ¼ 0: ð2Þ
The definition of hyperbolicity only concerns system (2) above; it means that the Jacobian matrix of fðuÞ with
respect to u has real eigenvalues and a set of associated eigenvectors which form a basis of Rd , where d is the
dimension of vector u.

Coming from a wide range of different fields, a large number of physical models can be cast in the SBL form
(1). Fluid mechanics is particularly concerned, since compressible fluid dynamics is usually modeled by the
Euler system, which is a hyperbolic SCL. In this case, the source term can model the presence of other physical
phenomena, such as gravity, reaction or friction.

We now restrict our analysis to source terms of the form Sðu; xÞ. Compared with SCL, the presence of a
source term generally has important consequences on the behaviour of SBL solutions. First, SBL may have
non-trivial steady solutions, namely solutions ~uðxÞ of the following system:
o

ox
fð~uÞ ¼ Sð~u; xÞ: ð3Þ
Second, SBL may tend towards reduced systems as we will explain now. At least two processes are involved in
SBL: a conservative process associated to the homogeneous part (2) with a characteristic speed mf , and a dis-
sipative/productive process associated to the source term S with a characteristic speed mS. If the time derivative
is scaled according to the speed mf , the dimensionless form of SBL (1) reads as
o

o�t
�uþ o

o�x
�fð�uÞ ¼ 1

�
�Sð�u;�xÞ; ð4Þ
where bars mean that variables are dimensionless and where � � mf

mS
is the ratio between characteristic speeds. A

very small ratio �� 1 means that the dissipative/productive process is too fast, compared with the conserva-
tive process, to be fully observed. Such a source term is called stiff source term. The presence of a stiff source
term may make tending the original system towards an asymptotic reduced system (see [12]), which can be of
different mathematical nature than the original one. This situation occurs for instance in the case of an isen-
tropic Euler system with large friction: the asymptotic limit of the original hyperbolic system is the porous
media equation (see [30,31]), which is parabolic.

By integrating system (1) over a finite space–time control volume Qi one obtains a finite volume formula-
tion for the system of balance laws (1), which usually takes the form
�unþ1
i ¼ �un

i �
Dt
Dxi

f iþ1
2
� f i�1

2

� �
þ DtSi: ð5Þ
The integration of (1) in space and time gives rise to a temporal integral of the flux across the element bound-
aries f iþ1

2
and to a space–time integral Si of the source term inside Qi. In practice, one must replace the integrals

of the flux and the source in (5) by some suitable approximations, that is to say one must choose a concrete

numerical scheme. For SCL, only a numerical flux must be chosen. In this case, the classical properties re-

quired are consistency, stability and accuracy. For SBL also a numerical source must be chosen. Here, not

only the three classical properties are required, but some additional properties are needed for the global

numerical scheme: It should be well-balanced, i.e. able to preserve steady states numerically. It should be ro-

bust also on coarse grids if the source term is stiff. A coarse grid is a grid whose size does not take into account

the source term, i.e. the characteristic space and time steps are based on the associated homogeneous SCL

only. Finally, the scheme should be asymptotically consistent or in other words asymptotic preserving if the
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source term is stiff. This means that the scheme should give the correct asymptotic behaviour even if the source

term is under resolved.
In the last three decades, powerful numerical fluxes have been proposed to solve hyperbolic SCL, for exam-

ple the fluxes of Godunov [22], Osher [20,46] and Roe [54] as well as the various HLL-type fluxes based on the
approximate Riemann solver of Harten et al. [28], see e.g. [18,19,63]. A naive approach to solve SBL would
consist of using one of these schemes for the flux f iþ1

2
and using a space-centered explicit scheme for the source

Si. However, treating the source explicitly may require prohibitively small time steps for stability reasons in
the stiff case. In order to counter that, the numerical source is usually taken implicitly. However, it is well-
known that using a classical numerical flux and a space-centered numerical source leads to spurious numerical
results; more precisely, the global scheme is neither well-balanced, see for instance [3,26,24], nor asymptoti-
cally consistent, see e.g. [48,9,6]. Consequently, other approaches have been proposed to overcome that, as
we will see in the following paragraph.

To solve SBL, very commonly used approaches are splitting schemes. A splitting approach (also called frac-

tional step method) consists of solving iteratively the associated SCL with a classical finite volume scheme, and
then the system of ODE associated to the source term with a classical numerical tool, like Runge–Kutta or
predictor–corrector methods. The accuracy of the global scheme depends on the number and the order of
these sub-steps; for example, a three sub-stage Strang splitting (see [57]) is second-order accurate in time,
but in the non-stiff case only, as pointed out in [33]. Although simple and robust, classical first-order splittings
and Strang splittings lead to global schemes that are neither well-balanced, nor asymptotically consistent (see
[41]) because the coupling between numerical flux and numerical source only occurs through the initial con-
dition of each sub-step. Better splitting schemes for particular SBL have been proposed (see [1,9,44,10]), and
are asymptotically consistent because at least one of the sub-steps takes into account both flux divergence and
source term. The high-order splitting scheme proposed by Pareschi and Russo [47] is asymptotically consistent
with the stiff limit and can also reach high order of accuracy in the stiff limit, but it is not uniformly accurate in
the whole possible range of the stiffness parameter �.

Another approach to solve SBL consists of upwinding the source at the interfaces (USI schemes). In the
original version of USI schemes (see [3,35]), a classical Riemann solver is first used to evaluate numerically
the solution uiþ1

2
of the homogeneous Riemann problem (without source term). This solution is then used

in a first-order finite volume scheme as argument of the flux, but also as argument of the source term in

Si ¼ 1
2

S ui�1
2

� �
þ S uiþ1

2

� �� �
, so that the same numerical information – based on the homogeneous system only

– is given to the flux and the source term, which makes the scheme at least approximately well-balanced. More
recently, other USI scheme versions have been proposed, which ensure that the scheme is also formally well-
balanced (see [50,4]). The main drawback of these approaches is that the global scheme must be explicit, thus
problems may occur in the stiff case. In [6], a new version of USI schemes, designed for stiff relaxation SBL,
has been proposed. The resulting scheme is robust, formally asymptotically consistent and stable under a clas-
sical CFL condition, but obtains only first order of accuracy.

In some of the well-balanced schemes proposed in the literature (for a non-exhaustive overview see
[5,11,24,26,39]), the source term is seen as a nonconservative product of a larger system. Due to the presence
of this nonconservative product, a particular path has to be chosen instead of the classical Rankine–Hugoniot
relations. This path can be chosen in such a way that the well-balanced property is formally imposed to the
scheme. Well-balanced schemes are very efficient to maintain steady states under classical CFL condition
Dt ’ OðDxÞ (see [24]), but are not designed to capture the good asymptotic behaviour imposed by a stiff source
term. More recently, a new version of well-balanced schemes which is also asymptotically consistent has been
proposed for a particular system (see [25]), but the resulting scheme is only stable under a very restrictive par-
abolic CFL condition of the type Dt ’ OðDx2Þ.

To solve SBL numerically, other approaches have been proposed. Sometimes, the Riemann problem con-
sidered takes into account the presence of the source term (generalized Riemann problem), see [21,38,64]. How-
ever, these methods are not robust enough to deal with stiff source terms. Concerning stiff relaxation systems,
another approach consists of solving numerically the asymptotic reduced system instead of solving the original
SBL, see [2,6]. In this case, numerical results can only be obtained in the stiff case, thus some information is
lost from the original SBL. In [43] it was pointed out that a semi-discrete discontinuous Galerkin (DG)
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scheme, i.e. only applying the DG space-discretization and remaining continuous in time, is an asymptotically
consistent scheme for linear systems with stiff relaxation. However, since the main problem of stiff SBL is pre-
cisely the time discretization, this theoretical result given in [43] is only of very limited use in practice. Another
idea proposed in [8] to solve nonlinear SBL is to use a combination of two tools. First, a relaxation scheme (see
[37]) is used in order to obtain a linear, but larger, SBL. Second, a well-balanced scheme designed to capture
the good asymptotic behaviour is applied on the larger system. The global scheme has many good properties,
but is only of first order of accuracy. Finally, some asymptotically consistent schemes have been derived using
an upwind flux that has been modified by the presence of the source term, see [49,36,45].

To our knowledge, a lot of tools to solve numerically SBL have been proposed up to now. The best ones
among those are well-balanced and asymptotically consistent, but none of them allows to reach very high
orders of accuracy in space and time (greater than three) while being stable under classical CFL condition.
The aim of this article is now to construct a numerical method for SBL that has a good asymptotic limit
behaviour when the source terms are stiff and that can reach any order of accuracy in space and time under
a standard CFL stability condition.

The structure of the paper is as follows: In Section 2, we show the construction of the proposed finite vol-
ume scheme. To assure monotonicity of the numerical solution in the vicinity of discontinuities, we briefly dis-
cuss the nonlinear WENO reconstruction operator in Section 2.1, which is necessary to obtain a high-order
polynomial data representation from the given cell averages. In Section 2.2, a new local space–time discontin-
uous Galerkin scheme is introduced to evolve this polynomial data in time. Numerical convergence studies are
then carried out in Section 3 and applications to various linear and nonlinear SBL with stiff source terms are
shown in Section 4. A summary with conclusions and an outlook regarding future work is given in Section 5.

2. An explicit arbitrary high-order accurate finite volume scheme for nonlinear hyperbolic systems with stiff source

terms

We consider hyperbolic systems of balance laws for the vector of conserved quantities u ¼ uðx; tÞ of the
form �
PDE : o
ot uþ o

ox fðuÞ ¼ SðuÞ;
IC : uðx; 0Þ ¼ u0ðxÞ;

ð6Þ
where fðuÞ is in general a nonlinear function of the state u and SðuÞ may be a stiff nonlinear source term. To
illustrate the general framework of the method in the simplest possible way we restrict ourselves in the whole
paper to one space dimension. The extension to multiple space dimensions can be done and will be the topic of
future research.

The spatial computational domain X � R is covered completely by pairwise disjoint spatial elements
Qi ¼�xi�1

2
; xiþ1

2
½, with Dxi ¼ xiþ1

2
� xi�1

2
and the cell average of uðx; tÞ within Qi is defined at time tn as
�un
i ¼

1

Dxi

Z x
iþ1

2

x
i�1

2

uðx; tnÞdx: ð7Þ
We furthermore define the space–time element spanned by the spatial element Qi and the time step
Dt ¼ tnþ1 � tn as Qi ¼ Qi��tn; tn þ Dt½. The associated relative space and time coordinates 0 6 n 6 1 and
0 6 s 6 1, within one element Qi are given by the relations
x ¼ xi�1
2
þ n � Dxi; and t ¼ tn þ s � Dt: ð8Þ
In the following, the numerical solution of (6) valid inside each element Qi will be denoted with uiðn; sÞ. A
standard finite volume discretization of (6) is given after integration of (6) over each space–time element Qi

as follows:
�unþ1
i ¼ �un

i �
Dt
Dxi

f iþ1
2
� f i�1

2

� �
þ DtSi ð9Þ
with
f iþ1
2
¼
Z 1

0

fhðuið1; sÞ; uiþ1ð0; sÞÞds and Si ¼
Z 1

0

Z 1

0

Sðuiðn; sÞÞdnds; ð10Þ
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where fhðuið1; sÞ; uiþ1ð0; sÞÞ denotes a numerical flux function (Riemann solver) that depends on the two argu-
ments uið1; sÞ and uiþ1ð0; sÞ, which are the boundary extrapolated data on the left and on the right side of the
element interface iþ 1

2
. For an overview of Riemann solvers see [61]. For all computations shown in this paper

we use the Rusanov flux, which is also often called the local Lax–Friedrichs flux. The Rusanov flux is a special
case of the HLL flux, with a particularly simple wave speed estimate which is taken to be the maximum of the
absolute values of the left and right eigenvalues. For an explicit standard first-order Godunov-type finite vol-
ume scheme, one would now simply have to set uiðn; sÞ ¼ �un

i and uiþ1ðn; sÞ ¼ �un
iþ1 for the arguments of the

numerical flux and inside the source term integral.
We emphasize that formula (9) together with (10) allows the construction of arbitrary high-order accurate

finite volume schemes, provided the representation of the numerical solution uiðn; sÞ inside each element and as
a consequence the arguments of the numerical flux function and the source term are high-order accurate in
space and time. Since (9) only computes the time update of the cell averages �un

i from time tn to time tnþ1 we
need to reconstruct higher-order polynomial data from these cell averages �un to get better estimates for the
arguments of the flux function and the source term in the integrals appearing in (10).

Therefore, as described in detail in the subsequent sections, the necessary steps to construct an arbitrary
high-order essentially non-oscillatory explicit one-step finite volume scheme are the following: (I) Nonlinear
(non-oscillatory) reconstruction of spatial polynomials from the given cell averages at time tn. (II) Local solu-
tion of the initial value problem (6) inside each element, where the initial data is given by the spatial recon-
struction polynomial at time tn. (III) Numerical integration of the integrals in (10) and update of the cell
averages according to (9).
2.1. Nonlinear reconstruction technique

In this section, we briefly discuss the proposed nonlinear weighted essentially non-oscillatory (WENO)
reconstruction procedure to reconstruct higher-order polynomial data within each spatial cell Qi at time tn

from the given cell averages �un
i . This corresponds to step (I) as outlined at the end of the previous section.

We emphasize already at this point that the reconstruction procedure is nonlinear and depends strongly on
the input data �un

i . Thus, the resulting numerical scheme, even when applied to a completely linear PDE, will
be nonlinear and thus it will not be possible to give a closed expression of the scheme.

The reconstruction procedure described here for the one-dimensional case follows directly from the guide-
lines given in [14] for general unstructured two- and three-dimensional meshes. It reconstructs entire polyno-

mials, as the original ENO approach proposed by Harten et al. in [27]. However, we formally write our
method like a WENO scheme [32,42] with a particularly simple choice for the linear weights. The most impor-
tant difference of our approach compared to classical WENO schemes is that standard WENO methods recon-
struct point values at the Gaussian integration points instead of an entire polynomial valid inside each element
Qi.

Reconstruction is done for each element on a reconstruction stencil Ss
i , which is given by the following

union of the element Qi and its neighbors Qj:
Ss
i ¼

[iþsþk

j¼iþs�k

Qj; ð11Þ
where s is the stencil shift with respect to the central element Qi and k is the spatial extension of the stencil to
the left and the right. A central reconstruction stencil is given by s ¼ 0, an entirely left-sided stencil is given by
s ¼ �k and an entirely right-sided stencil is given by s ¼ k. In our approach, we always will use the three fixed
reconstruction stencils S0

i , S�k
i and Sk

i .
Given the cell average data �un

i in all elements Qi we are looking for a spatial reconstruction polynomial
obtained from Ss

i at time tn of the form:
ws
i ðn; tnÞ ¼

XM

l¼0

WlðnÞŵði;sÞl ðtnÞ :¼ WlðnÞŵði;sÞl ðtnÞ; ð12Þ



3976 M. Dumbser et al. / Journal of Computational Physics 227 (2008) 3971–4001
where we use the rescaled Legendre polynomials for the spatial reconstruction basis functions WlðnÞ such that
the WlðnÞ form an orthogonal basis on the unit interval I ¼ ½0; 1�. In the following, we will use standard tensor
index notation, implying summation over indices appearing twice. The number of polynomial coefficients (de-
grees of freedom) is L ¼ M þ 1, where M is the degree of the reconstruction polynomial. To compute the
reconstruction polynomial wiðn; tnÞ valid for element Qi we require integral conservation for all elements Qj

inside the stencil Ss
i , i.e.
Z

Qj

ws
i ðn; tnÞdn ¼

Z
Qj

WlðnÞdn � ŵði;sÞl ðtnÞ ¼ �un
j 8Qj 2 Ss

i : ð13Þ
Eq. (13) yields a linear equation system of the form
Ajl � ŵði;sÞl ðtnÞ ¼ �un
j ð14Þ
for the unknown coefficients ŵ
ði;sÞ
l ðtnÞ of the reconstruction polynomial on stencil Ss

i . Since we choose k ¼ M=2
for even M and k ¼ ðM þ 1Þ=2 for odd M, the number of elements in Ss

i may become larger than the number
of degrees of freedom L. In this case, we use a constrained least-squares technique according to [14] to solve
(14).

To obtain the final non-oscillatory reconstruction polynomials for each Qi at time tn, we finally construct a
data-dependent nonlinear combination of the polynomials w0

i ðn; tnÞ, w�k
i ðn; tnÞ and wk

i ðn; tnÞ obtained from the
central, left-sided and right-sided stencils as follows:
wiðn; tnÞ ¼ ŵi
lðtnÞWlðnÞ ð15Þ
with
ŵi
lðtnÞ ¼ x0ŵ

ði;0Þ
l ðtnÞ þ x�kŵ

ði;�kÞ
l ðtnÞ þ xkŵ

ði;kÞ
l ðtnÞ: ð16Þ
The nonlinear weights xs are given by the relations
xs ¼
~xs

~x0 þ ~x�k þ ~xk
; ~xs ¼

ks

rs þ �ð Þr : ð17Þ
In our particular formulation, the oscillation indicators rs are computed from
rs ¼ Rlmŵs
lðtnÞŵs

mðtnÞ with Rlm ¼
XM

a¼1

Z 1

0

oaWlðnÞ
ona � o

aWmðnÞ
ona dn: ð18Þ
Here, Rlm is the universal oscillation indicator matrix for the reference element QE that does neither depend on
the problem nor on the mesh, see [14]. The parameters � and r are constants for which we typically choose
� ¼ 10�14 and r ¼ 12. For the linear weights ks we choose k�k ¼ kk ¼ 1 and a very large linear weight k0 on
the central stencil, typically k0 ¼ 105. It has been shown previously [32,42] that the numerical results are quite
insensitive to the WENO parameters � and r and also with respect to the linear weight on the central stencil k0,
see [14].

The proposed reconstruction usually uses the accurate and linearly stable central stencil reconstruction in
those regions of X where the solution is smooth because of the large linear weight k0. However, due to the
strongly nonlinear dependence of the weights xs on the oscillation indicators rs, in the presence of disconti-
nuities the smoother left- or right-sided stencils are preferred, as for standard ENO and WENO methods. For
the nonlinear scalar case, the reconstruction operator described above can be directly applied to the cell aver-
ages �un

i of the conserved quantity u. For nonlinear hyperbolic systems, the reconstruction should be done in
characteristic variables [27,15] in order to avoid spurious oscillations that may appear when applying ENO or
WENO reconstruction operators component-wise to nonlinear hyperbolic systems.

The result of the reconstruction procedure is a non-oscillatory spatial polynomial wiðn; tnÞ defined at time tn

inside each spatial element Qi. However, we still need to compute the temporal evolution of these polynomials
inside each space–time element Qi in order to be able to compute the integrals appearing in (10).
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2.2. The local space–time discontinuous Galerkin scheme

In previously published ADER finite volume schemes (see e.g. [14,15,60,65]) and also in the original ENO
scheme of Harten et al. [27] the nonlinear reconstruction step (I) as well as the numerical integration and
update step (III) as outlined at the end of Section 2 are very similar compared with the new scheme proposed
in this article. The only main difference lies in the solution of the local initial value problem (IVP) defined in
step (II). In ADER finite volume schemes and also in the original ENO approach the temporal evolution of
the reconstruction polynomial is computed using the so-called Cauchy–Kovalewski or Lax–Wendroff proce-
dure. This procedure constructs a local solution of the IVP making the ansatz of a local time Taylor series
expanded at time level tn, where then time derivatives are replaced by spatial derivatives differentiating repeat-
edly the governing PDE with respect to space and time. The spatial derivatives are obtained from the recon-
struction polynomials at time tn. In [17,55] it has been shown analytically via differential approximation and
also numerically that these finite volume schemes can reach any order of accuracy in space and time.

It is a well-known fact that methods based on Taylor series usually do not work in the presence of stiff
source terms. Therefore, we propose to replace the Cauchy–Kovalewski procedure by a new local space–time
DG scheme in order to solve the local IVP in step (II). In our local space–time DG scheme, the usual integra-
tion by parts is done only in time and not in space, which establishes a distinct difference compared to the
existing global space–time DG schemes [66]. A comparison of the classical Cauchy–Kovalewski procedure
and the new local space–time DG scheme will be shown for a simple case to illustrate the difference in the qual-
ity of the solution of the local IVP.

2.2.1. Linear scalar model equation

To illustrate the construction and the theoretical properties of our proposed method, in this section we only
consider the simple linear scalar model equation with the linear flux and source functions:
f ðuÞ ¼ au and SðuÞ ¼ �mu; a > 0; m > 0; ð19Þ

where the stiffness of the relaxation source term is determined by the parameter m and where we suppose peri-
odic boundary conditions for the moment.

The space of basis and test functions V h of the local space–time DG scheme is defined to be the space
spanned by piecewise polynomials given by the space–time tensor products of the scaled Legendre polynomi-
als WiðnÞ and WjðsÞ of degree 0 6 i; j 6 M , i.e.
Uk ¼ Ukðn; sÞ ¼ WiðnÞ �WjðsÞ: ð20Þ
In Eq. (20) the index k with 1 6 k ¼ kði; jÞ 6 Nd is a mono-index ranging from 1 to the number of degrees of
freedom Nd ¼ ðM þ 1Þ2, computed from the index pair ði; jÞ. As already defined above, 0 6 n 6 1 and
0 6 s 6 1 are the spatial and the temporal coordinates in the space–time reference element
QE ¼ ½0; 1� � ½0; 1� 2 R2. In the following, we will use the following two scalar products of two functions
f ðn; sÞ and gðn; sÞ:
hf ; gi ¼
Z 1

0

Z 1

0

f ðn; sÞ � gðn; sÞdnds; ½f ; g�s ¼
Z 1

0

f ðn; sÞ � gðn; sÞdn; ð21Þ
where the first one denotes the space–time scalar product over the space–time reference element QE and the
second one is the purely spatial scalar product over the spatial reference element QE ¼ ½0; 1� at time s. The local
numerical solution ui of (6) inside each space–time control volume Qi is approximated within the reference
element QE using the basis functions Uk as follows:
ui ¼ uiðn; sÞ ¼
XNd

l¼1

Ul n; sð Þ � ûi
l :¼ Ul n; sð Þûi

l; ð22Þ
where we again use the classical Einstein summation convention for tensor calculus, which implies summation
over all indices appearing twice.
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The proposed local space–time discontinuous Galerkin finite element method is now obtained by first
rewriting the governing PDE (6) together with the assumption (19) in terms of the variables in the reference
element, i.e.
o

os
uþ a	

o

on
u ¼ �m	u ð23Þ
with a	 ¼ Dtnx � a and m	 ¼ Dt � m.
Multiplication of the modified governing PDE with test functions Uk 2 V h and integration over the refer-

ence element QE yields
Uk;
o

os
ui

� �
þ a	 Uk;

o

on
ui

� �
¼ �m	hUk; uii: ð24Þ
For the space–time discontinuous Galerkin scheme presented in [66] one would now have to integrate both
terms on the left-hand side by parts in space and time in order to introduce the information from the neighbor
elements and to shift the spatial derivative operator onto the test function. For our purposes, however, the
integration by parts in space is not required since we want to keep a local formulation that does not need
any information from the neighbor elements but for which it is sufficient to provide an initial condition. There-
fore, we only use the integration by parts in time for the first term that contains the time derivative, and obtain
½Uk; ui�1 � ½Uk;wi�0 �
o

os
Uk; ui

� �
þ a	 Uk;

o

on
ui

� �
¼ �m	hUk; uii: ð25Þ
The spatial scalar products appearing in (25) correspond to the fluxes in time direction. Due to the causality
principle the future has no influence on the past, i.e. we can take the numerical solution inside the element itself
for the flux at relative time s ¼ 1, whereas the flux at relative time s ¼ 0 will be completely defined by the ini-
tial condition wi ¼ wiðn; tnÞ ¼ WmðnÞŵi

mðtnÞ. The initial condition is hence given by the reconstruction polyno-
mials obtained from the reconstruction operator applied to the cell averages at the current time tn. We recall
that the WmðnÞ are the reconstruction basis functions introduced in Section 2.1. Please note that due to the use
of a discontinuous Galerkin approximation, in general wiðn; tnÞ 6¼ uiðn; 0þÞ, i.e. the reconstruction polynomials
at t ¼ tn do not necessarily agree with the boundary extrapolated polynomial uiðn; 0þÞ of the space–time DG
solution inside element Qi at s ¼ 0þ. Inserting the time fluxes and the ansatz for the numerical solution (22)
into (25) yields
½Uk;Ul�1 �
o

os
Uk;Ul

� �
þ a	 Uk;

o

on
Ul

� �
þ m	hUk;Uli

� �
ûi

l ¼ ½Uk;Wm�0ŵi
mðtnÞ: ð26Þ
Introducing the element mass matrix Mkl ¼ hUk;Uli, the stiffness matrices with respect to time
Ks

kl ¼ o
os Uk;Ul

	 

and space Kn

kl ¼ hUk;
o
on Uli as well as the flux matrices F 0

km ¼ ½Uk;Wm�0 and F 1
kl ¼ ½Uk;Ul�1

for time s ¼ 0 and s ¼ 1, we obtain the following equation system for the unknowns ûi
l:
Y klûi
l ¼ F 0

kmŵi
mðtnÞ: ð27Þ
The system has a unique solution if the system matrix
Y kl ¼ F 1
kl � Ks

kl þ a	Kn
kl þ m	Mkl ð28Þ
is invertible. It will be shown in the following that this is always the case for any value of m. Therefore, the
solution of (27) can be written as
ûi
l ¼ Y �1

kl � F 0
kmŵi

mðtnÞ: ð29Þ

We note that the local space–time DG scheme (26) requires the solution of the linear equation system (27) and
thus is locally implicit. Due to the local character of the method, the computation of the space–time degrees of
freedom ûi

l can be done independently for each cell Qi, without considering neighbor elements. However, we
emphasize that this is the only locally implicit part of the entire algorithm. The resulting finite volume scheme
(9) is completely explicit.
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2.2.2. Properties of the local space–time discontinuous Galerkin scheme

2.2.2.1. Well-posedness. The mass matrix Mkl is diagonal since the functions Ukðn; sÞ form an orthogonal basis
on the space–time reference element QE with respect to the scalar product h�; �i. Therefore, the system matrix
Y kl is diagonally dominant in the case m!1 and thus system (27) will be always well posed, especially in the
stiff limit.

2.2.2.2. Boundedness of the solution. In the following we want to show via asymptotic analysis that the solution
ui of (26) remains bounded in the limit m!1. Even more, we will show that the discrete solution of (26) tends
to zero as m!1. We therefore write (26) with Uk 2 V h and m	 ¼ 1=�, where � > 0 is a small parameter and
m!1 for �! 0, as follows:
½Uk; ui�1 � ½Uk;wi�0 �
o

os
Uk; ui

� �
þ a	 Uk;

o

on
ui

� �
¼ � 1

�
hUk; uii: ð30Þ
Furthermore, we write a series expansion for ui ¼ uiðn; sÞ in terms of the small parameter � with u0 2 V h,
u1 2 V h, and u2 2 V h as
ui ¼ u0 þ �1u1 þ �2u2 þOð�3Þ: ð31Þ

After inserting (31) into (30) we obtain the following equation system retaining only terms up to power �1:
½Uk; u0 þ �u1�1 � ½Uk;wi�0 �
o

os
Uk; u0 þ �u1

� �
þ a	 Uk;

o

on
ðu0 þ �u1Þ

� �
¼ � 1

�
hUk; u0 þ �u1 þ �2u2i: ð32Þ
Since Eq. (32) must be fulfilled for any value of � > 0, all coefficients after the terms in � must vanish. From the
leading term ��1 we therefore obtain
hUk; u0i ¼ 0 8Uk 2 V h ) u0 ¼ 0: ð33Þ

Inserting (33) in (32) and considering the coefficients of the terms �0 we obtain
hUk; u1i � ½Uk;wi�0 ¼ 0 ð34Þ

and from the term �1 we get
hUk; u2i �
o

os
Uk; u1

� �
þ a	 Uk;

o

on
u1

� �
¼ 0: ð35Þ
Eqs. (34) and (35) connect u1 and u2 with the initial condition wiðn; tnÞ. Since wiðn; tnÞ does not depend explic-
itly on �, from Eqs. (33)–(35) and the ansatz (31) follows:
lim
�!0

uiðn; sÞ ¼ lim
�!0
ð�u1 þ �2u2 þOð�3ÞÞ ¼ 0: ð36Þ
From (36) follows the boundedness of uiðn; sÞ in Qi in the stiff limit �! 0. This property is necessary to elim-
inate the stiffness from the numerical flux in (10) in the limit �! 0. For our model problem (19) the numerical
flux fhðuið1; sÞ; uiþ1ð0; sÞÞ in (10) is a linear function of its two arguments uið1; sÞ and uiþ1ð0; sÞ. Since (36) is
valid independently for all elements Qi, we get fiþ1

2
! 0 and fi�1

2
! 0 for �! 0.

2.2.2.3. Boundedness of the source term integral. Even more important for the robustness of the finite volume
scheme (9) is the boundedness of the source space–time integral Si defined in (10). For the linear scalar model
Eq. (19) the source space–time integral reads with 1=� ¼ m	 ¼ Dtm together with the asymptotic ansatz (31) and
Eq. (33) as
Si ¼ �mh1; uii ¼ �Dt�1 1

�
h1; uii ¼ �

1

Dt
h1; u1 þ �1u2 þOð�2Þi: ð37Þ
Using (34) and the conservation property (13) of the reconstruction operator, i.e. ½1;wi�0 ¼ �un
i , we finally

obtain
Si ¼ �
1

Dt
ð½1;wi�0 þOð�ÞÞ ¼ � 1

Dt
ð�un

i þOð�ÞÞ ð38Þ
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and in the stiff limit �! 0 we have
lim
�!0

Si ¼ �
�un

i

Dt
: ð39Þ
Inserting (36) and (39) into (9) and (10), we obtain the following finite volume scheme in the stiff limit:
lim
�!0

�unþ1
i ¼ �un

i þ
Dt
Dx

lim
�!0

fiþ1
2
� fi�1

2

� �
þ Dt lim

�!0
Si ¼ 0: ð40Þ
This means that for any bounded initial condition �un
i and for any bounded Dt (e.g. bounded by the standard

CFL condition) our finite volume scheme of any order of accuracy captures the stiff limit of (6) with (19).

2.2.2.4. Asymptotic preserving (AP) property. In Appendix C, we show that the local space–time DG scheme
has the AP property in the sense of [34] for a simple linear model system at least for polynomial approximation
spaces of degree greater or equal two.

2.2.3. Comparison of the Cauchy–Kovalewski procedure with the local space–time DG scheme for a linear scalar

ODE

As mentioned already before, in the original ENO approach of Harten et al. [27] and also for ADER finite
volume and discontinuous Galerkin schemes [14,15,13,16,60,62], the time-accurate temporal evolution of the
reconstruction polynomials wiðn; tnÞ is predicted inside each element within one time step using the Cauchy–
Kovalewski procedure, where the local solution is computed via a temporal Taylor series in which the time
derivatives are replaced by space derivatives using repeated differentiation of the governing partial differential
equation (6). As an initial condition for this procedure, the reconstruction polynomials wiðn; tnÞ at time t ¼ tn

are taken. In other words, we are looking for a local solution uiðn; sÞ of the initial value problem for (6) inside

each space–time element Qi, where the initial condition is given by the reconstruction polynomials, i.e.
uðxðnÞ; 0Þ ¼ wiðn; tnÞ.

Neglecting convection for the moment, i.e. setting a ¼ 0, the PDE (6) with (19) reduces to the simple linear
ordinary differential equation
o

ot
u ¼ �mu; t 2 Rþ0 ; ð41Þ
whose solution is given by
uðt; mÞ ¼ uð0Þe�mt: ð42Þ

For very large values of m, the solution (42) tends to the discontinuous limit solution
lim
m!1

uðt; mÞ ¼
uð0Þ if t ¼ 0;

0 if t > 0:

�
ð43Þ
It is obvious that a Taylor series expanded at time t ¼ 0 is not able to approximate such a discontinuous solu-
tion as given by (43). For this reason, the Cauchy–Kovalewski method cannot be applied in this case to con-
struct a local solution to (6) since it is based essentially on the applicability of the Taylor series expansion in
time. In order to construct a polynomial approximation to (42) that is at the same time high-order accurate
and is able to capture the stiff limit (43), we have proposed the new local space–time discontinuous Galerkin
scheme (27) applied to (6) locally inside each element. The solution uiðn; sÞ of this local space–time DG scheme
applied to all elements Qi is used in the finite volume scheme (9) to compute the numerical fluxes at the element
interfaces and to compute the space–time integral of the source term in (10).

In Fig. 1 we show the numerical solutions obtained with sixth-order schemes (basis polynomials Uk of max-
imal degree five) applied to (41) for increasing values of m with the initial condition uð0Þ ¼ 1. This figure shows
very clearly that the Cauchy–Kovalewski procedure already fails for the small value of m ¼ 3. For very large
values of m, the solution of the Cauchy–Kovalewski procedure is only correct in a very small interval ½0; d�
ð0 < d� 1Þ and diverges quickly in the remaining interval �d; 1�, whereas our new local space–time DG
scheme apparently converges to the correct solution (43) of (41) for m!1 in the interval �d; 1�. We note fur-
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Fig. 1. Exact solution and sixth-order numerical solutions of (41) using the Cauchy–Kovalewski procedure based on a temporal Taylor
series expansion and the new local space–time DG scheme for m ¼ 3 (top left), m ¼ 10, (top right), m ¼ 100 (bottom left) and m ¼ 1000
(bottom right).
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thermore that the local space–time DG scheme produces an almost continuous solution at s ¼ 0 for small val-
ues of m and exhibits an increasing jump at s ¼ 0 for increasing m in order to capture correctly the discontin-
uous behaviour of (42). Note that in all cases shown uð0Þ ¼ 1.

2.2.4. General linear hyperbolic systems with stiff source terms

The extension of the proposed local space–time discontinuous Galerkin scheme to general linear hyperbolic
systems is straightforward. We consider linear systems of the form:
o

ot
up þ Apq

o

ox
uq ¼ �Epquq; ð44Þ
where up is the vector of state of n unknowns, Apq is a n� n matrix with real eigenvalues and with a complete
set of eigenvectors. The n� n matrix Epq must be positive definite. We then rewrite system (44) in reference
coordinates n and s and obtain
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o

ot
uq þ A	pq

o

ox
uq ¼ �E	pquq ð45Þ
with A	pq ¼ Dtnx � Apq and E	pq ¼ Dt � Epq. The same steps as described in Section 2.2.1 can be applied and we
finally obtain the equation system
ðdpqðF 1
kl � Ks

klÞ þ A	pqKn
kl þ E	pqMklÞûi

ql ¼ dprF 0
kmŵi

rmðtnÞ: ð46Þ
Here, dpq is the classical Kronecker symbol. The combination of the indices k, l, m for the degrees of freedom
with the indices p and q for the variables can be interpreted as sub-array syntax. Using the sub-array syntax we
denote the system matrix
Y pqkl ¼ dpqðF 1
kl � Ks

klÞ þ A	pqKn
kl þ E	pqMkl ð47Þ
and formally write the solution of (46) as
ûi
ql ¼ Y �1

pqkl � dprF 0
kmŵi

rmðtnÞ: ð48Þ
Eq. (46) is a local linear equation system that can be solved for each element Qi independently and thus also
leads to a locally implicit scheme for uiðn; sÞ and does not need any information from the neighboring
elements.

2.2.5. General nonlinear hyperbolic systems with stiff source terms

For the construction of the space–time DG scheme for general nonlinear hyperbolic systems of conserva-
tion laws with source terms of the form (6), we also first re-write the system (6) in coordinates of the reference
element as follows:
o

os
uþ o

on
f	ðuÞ ¼ S	ðuÞ ð49Þ
with the modified flux and source function f	 ¼ f	ðuÞ ¼ DtnxfðuÞ and S	 ¼ S	ðuÞ ¼ DtSðuÞ. We then multiply
with the test functions Ukðn; sÞ, integrate over QE and subsequently integrate the first term containing the time
derivative by parts, and introduce the corresponding time fluxes as in the linear case, in order to obtain
½Uk; u�1 � ½Uk;wi�0 �
o

os
Uk; u

� �
þ Uk;

o

on
f	

� �
¼ Uk;S

	h i: ð50Þ
Plugging the ansatz for the numerical solution (22) into (50) yields the following nonlinear system of equations
for the unknowns ûi

l:
½Uk;Ul�1ûi
l � ½Uk;Wm�0ŵi

mðtnÞ � o

os
Uk;Ul

� �
ûi

l þ Uk;
o

on
f	ðUlû

i
lÞ

� �
� hUk;S

	ðUlû
i
lÞi ¼ 0: ð51Þ
The necessity to solve the local nonlinear system of equations (51) adds further complications to our algorithm
compared to the case of linear systems. Due to the locally implicit character of the local space–time DG
scheme, the use of a Newton algorithm or other strategies for finding roots of nonlinear equation systems be-
comes necessary. In this paper, we apply the following strategy.

To compute the solution of (51) we first linearize the nonlinear system (49) with respect to the initial con-
dition given by wiðn; tnÞ, then we solve the resulting linear equation system (46) exactly using Gauss-Jordan
elimination and obtain as result a first guess û

ði;1Þ
l of the solution ûi

l of (51). Linearizing about û
ði;1Þ
l Ulðn; 1Þ

and solving the resulting linear system again exactly yields the second guess values û
ði;2Þ
l . This procedure is usu-

ally repeated for a total number of three times. The third guess values û
ði;3Þ
l are then the starting point of a

standard multivariate Newton method for nonlinear systems of equations as described e.g. in chapter 9.7
of [51]. We remark that for the solution of (51) the initial guess used as input for the Newton method remains
very crucial even for so-called globally convergence Newton methods as described in [51]. We note that for
nonlinear systems with stiff source terms, most of the computational time of our algorithm is spent in the solu-
tion of (51). Since the authors are not experts in the field of efficiently solving nonlinear systems of equations,
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there may be other, much more efficient techniques such as inexact Newton solvers to solve (51). However, the
main scope of this article is not to solve (51) efficiently but to validate the general approach.

We finally would like to point out that for the special case fðuÞ ¼ 0 the scheme (51) automatically reduces to
a standard discontinuous Galerkin method for the nonlinear system of ordinary differential equations (ODE):
o

ot
u ¼ SðuÞ: ð52Þ
At this point, we would like to summarize again the necessary steps for our proposed explicit arbitrary high-
order accurate finite volume schemes for hyperbolic systems with stiff source terms:

(I) Compute the degrees of freedom ŵi
lðtnÞ of the weighted essentially non-oscillatory (WENO) reconstruc-

tion polynomials wiðn; tnÞ at time tn from the given cell averages �un
i of the finite volume scheme using

(14)–(18).
(II) Compute the solution ûi

l of the local space–time discontinuous Galerkin method (51), where the initial
condition is given by the reconstructed degrees of freedom wi

lðn; tnÞ at time tn.
(III) Use the solution uiðn; sÞ ¼ Ulðn; sÞûi

l to compute the arguments for the source term and the numerical
flux in (10) that are needed for the explicit finite volume scheme (9). The integrals appearing in Eq.
(10) are computed using classical Gaussian quadrature formulae, see e.g. [58] for details. Update the cell
averages according to (9) to the new time tnþ1 and restart with step (I).

The final scheme could also be interpreted as a method to solve the generalized Riemann problem at the cell
interfaces given by the reconstruction polynomials at time tn for the stiff balance law which follows the spirit of
the original ADER schemes developed by Titarev and Toro. At the end of this section we would like to add a
very important remark concerning systems of balance laws: In order to obtain a correct coupling of the flux
and the source term inside the local space–time DG scheme (51) together with the finite volume discretization
(9), numerical schemes of order of accuracy of at least two must be used, which means that the polynomial
degree of the basis and test functions Uk must be at least one. This is due to the fact that the first-order version
of the local space–time DG scheme, i.e. the one with polynomial degree zero for the basis and test functions
Uk, does not couple source and flux in the local solution uiðn; sÞ because the term hUk;

o
on f	ðUlû

i
lÞi in (51) van-

ishes in this case.

3. Numerical convergence studies

To assess the convergence behaviour of our method numerically, we solve the following nonlinear hyper-
bolic system with source terms, for which a non-trivial exact reference solution is known by construction:
o

ot
uþ o

ox
1

2
v2

� �
¼ �mðu� ueÞ þ

o

ot
ue þ

o

ox
1

2
v2

e

� �
;

o

ot
vþ o

ox
1

2
u2

� �
¼ �mðv� veÞ þ

o

ot
ve þ

o

ox
1

2
u2

e

� �
:

ð53Þ
It is easy to see that any differentiable function pair ueðx; tÞ; veðx; tÞ satisfies Eq. (53). For our convergence stud-
ies, we choose the following smooth reference solution:
ueðx; tÞ ¼ U 0 þ Au sinðkx� xtÞ; veðx; tÞ ¼ V 0 þ Av cosðkx� xtÞ: ð54Þ

In particular, we choose the following parameters for the reference solution used in the numerical convergence
studies: U 0 ¼ 4, V 0 ¼ 6, Au ¼ 0:1, Av ¼ 0:3, k ¼ x ¼ 2p. Eq. (53) is solved on the computational domain
X ¼ ½0; 1� with periodic boundary conditions. The Courant number is set in the following test cases to
CFL ¼ 0:5.

First, we assess the capability of our scheme to maintain the balance between the nonlinear advection oper-
ator on the left-hand side and the source terms on the right-hand side in the non-stiff case for m ¼ 10. The ini-
tial conditions for u and v are in this case uðx; 0Þ ¼ ueðx; 0Þ and vðx; 0Þ ¼ veðx; 0Þ. We compute the problem for
half a period, i.e. up to the final output time t ¼ 0:5. The numerical convergence results obtained for the var-
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iable v with the proposed ADER finite volume schemes from second to sixth order of accuracy in space and
time are shown in Table 1, where NG denotes the number of grid cells used to discretize the domain X. The
errors and the associated convergence rates between two successive grid refinements are shown in L1, L2

and L1 norm. The error norms are computed numerically according to
Table
Nume
accura

NG

ADER

8
16
32
64

128

ADER

8
16
32
64

128

ADER

4
8

16
32
64

ADER

4
8

16
20
32

ADER

4
8

12
16
20
kw� vekp ¼
Z 1

0

jwðx; tÞ � veðx; tÞjpdx
� �1

p

; ð55Þ
using Gaussian quadrature rules of appropriate order. We emphasize that the norms are computed comparing
the second component of the reconstructed solution against the exact reference solution ve. As an approxima-
tion for the infinity norm, we take the maximum of the error obtained in any of the Gaussian integration
points.

The results presented in Table 1 show clearly that the method converges with the designed order of accu-
racy. They furthermore indicate the capability of the method to maintain a good balance between the source
terms on the right-hand side of the governing equation and the nonlinear convection on the left-hand side,
respectively.

Second, we assess the accuracy and the robustness of the proposed schemes in the presence of a very stiff
source term. Therefore, we choose in this second test case m ¼ 108. Since we know that the stiff relaxation
source term in the governing equation (53) will cause the solution to relax to the equilibrium given by the ref-
1
rical convergence rates for the non-stiff case ðm ¼ 10Þ obtained with ADER finite volume schemes from second to sixth order of
cy in space and time

L1 L2 L1 OL1 OL2 OL1

-FV O2, ðM ¼ 1Þ. m ¼ 10
3.1079E�02 3.3731E�02 5.3694E�02
6.4558E�03 7.8656E�03 1.5286E�02 2.3 2.1 1.8
1.1027E�03 1.5591E�03 4.6096E�03 2.5 2.3 1.7
1.9859E�04 3.2959E�04 1.1626E�03 2.5 2.2 2.0
2.8261E�05 5.5964E�05 2.8027E�04 2.8 2.6 2.1

-FV O3, ðM ¼ 2Þ. m ¼ 10
4.0967E�03 5.3548E�03 1.0574E�02
5.4254E�04 7.0971E�04 1.4511E�03 2.9 2.9 2.9
6.9171E�05 8.9516E�05 1.8292E�04 3.0 3.0 3.0
8.6332E�06 1.1171E�05 2.2846E�05 3.0 3.0 3.0
1.0816E�06 1.3965E�06 2.8546E�06 3.0 3.0 3.0

-FV O4, ðM ¼ 3Þ. m ¼ 10
1.5831E�02 2.0495E�02 4.1219E�02
1.1568E�03 1.3030E�03 2.2840E�03 3.8 4.0 4.2
6.8436E�05 7.6848E�05 1.3577E�04 4.1 4.1 4.1
4.1739E�06 4.6990E�06 8.8561E�06 4.0 4.0 3.9
2.5792E�07 2.9389E�07 5.4790E�07 4.0 4.0 4.0

-FV O5, ðM ¼ 4Þ. m ¼ 10
1.3054E�02 1.5158E�02 2.4062E�02
4.9450E�04 6.3210E�04 1.2255E�03 4.7 4.6 4.3
1.6178E�05 2.1234E�05 4.3206E�05 4.9 4.9 4.8
5.3607E�06 7.0209E�06 1.4525E�05 4.9 5.0 4.9
5.3921E�07 6.8677E�07 1.4518E�06 4.9 4.9 4.9

-FV O6, ðM ¼ 5Þ. m ¼ 10
8.3790E�03 9.9571E�03 2.2749E�02
1.6979E�04 2.0617E�04 5.0498E�04 5.6 5.6 5.5
1.5335E�05 1.8985E�05 4.7928E�05 5.9 5.9 5.8
2.7810E�06 3.4639E�06 9.0072E�06 5.9 5.9 5.8
7.5279E�07 9.5828E�07 2.5537E�06 5.9 5.8 5.6



Table 2
Numerical convergence rates for the very stiff case ðm ¼ 108Þ obtained with ADER finite volume schemes from second to sixth order of
accuracy in space and time

NG L1 L2 L1 OL1 OL2 OL1

ADER-FV O2, ðM ¼ 1Þ. m ¼ 108

8 2.9784E�02 3.0049E�02 3.4246E�02
16 6.3522E�03 7.2830E�03 1.1337E�02 2.2 2.0 1.6
32 5.2567E�04 8.5936E�04 1.7792E�03 3.6 3.1 2.7
64 1.2096E�04 2.1170E�04 4.3802E�04 2.1 2.0 2.0

128 1.5717E�05 3.8232E�05 1.0892E�04 2.9 2.5 2.0

ADER-FV O3, ðM ¼ 2Þ. m ¼ 108

8 3.5814E�03 5.0870E�03 9.2163E�03
16 4.5652E�04 6.7004E�04 1.2552E�03 3.0 2.9 2.9
32 5.7309E�05 8.4607E�05 1.6027E�04 3.0 3.0 3.0
64 7.1382E�06 1.0613E�05 2.0140E�05 3.0 3.0 3.0

128 8.9658E�07 1.3275E�06 2.5379E�06 3.0 3.0 3.0

ADER-FV O4, ðM ¼ 3Þ. m ¼ 108

4 1.4142E�02 1.9636E�02 3.8569E�02
8 1.0485E�03 1.2385E�03 2.3951E�03 3.8 4.0 4.0

16 6.4253E�05 7.5030E�05 1.4553E�04 4.0 4.0 4.0
32 3.9752E�06 4.6373E�06 9.0331E�06 4.0 4.0 4.0
64 2.4920E�07 2.8917E�07 5.5709E�07 4.0 4.0 4.0

ADER-FV O5, ðM ¼ 4Þ. m ¼ 108

4 1.3054E�02 1.5158E�02 2.4062E�02
8 4.9450E�04 6.3210E�04 1.2255E�03 4.7 4.6 4.3

16 1.6179E�05 2.1235E�05 4.3216E�05 4.9 4.9 4.8
32 5.3935E�07 6.8713E�07 1.4690E�06 4.9 4.9 4.9
64 2.0147E�08 2.5747E�08 6.4216E�08 4.7 4.7 4.5

ADER-FV O6, ðM ¼ 5Þ. m ¼ 108

4 8.3790E�03 9.9571E�03 2.2749E�02
8 1.6980E�04 2.0617E�04 5.0498E�04 5.6 5.6 5.5

12 1.5336E�05 1.8986E�05 4.7918E�05 5.9 5.9 5.8
16 2.7812E�06 3.4641E�06 8.9977E�06 5.9 5.9 5.8
20 7.5301E�07 9.5840E�07 2.5566E�06 5.9 5.8 5.6

M. Dumbser et al. / Journal of Computational Physics 227 (2008) 3971–4001 3985
erence solution ue; ve from any initial condition, we choose a constant initial condition uðx; 0Þ ¼ 10, vðx; 0Þ ¼ 2,
which is far from the equilibrium ue; ve and as a consequence in the first time steps the source is very stiff. Once
the equilibrium u ¼ ue; v ¼ ve has been reached, the scheme must be able to maintain it. The numerical con-
vergence rates obtained for variable v with ADER finite volume schemes from second to sixth order for this
very stiff case ðm ¼ 108Þ are shown in Table 2. From the results we can clearly conclude that the method is at
the same time able to treat stiff source terms robustly and maintains an excellent balance between flux diver-
gence and source term at the designed order of accuracy in space and time. To our knowledge, this is the first
finite volume scheme ever presented in the research literature on stiff source terms that achieves arbitrary high
order of accuracy in space and time. This is, of course, only valid for sufficiently smooth solutions.

4. Applications

4.1. Model system with linear flux and nonlinear source term

We consider the following class of linear advection systems with nonlinear relaxation:
o
ot uþ o

ox v ¼ 0;
o
ot vþ o

ox u ¼ � 1
�

v
aðuÞ ;

(
ð56Þ
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where � is a positive parameter and aðuÞ is any given function which satisfies aðuÞ > 0 8u in the domain of
interest and does not depend on �. System (56) can be seen as a dimensionless system where � is the ratio be-
tween the characteristic time of the relaxation process over the characteristic time of the pure advection pro-
cess. If the relaxation process is much faster than the advection process, namely if �� 1 which corresponds to
the stiff case, it is possible to obtain the asymptotic limit of the system. An asymptotic expansion of the relax-
ating variable formally reads as
v ¼ v0 þ �v1 þOð�2Þ; ð57Þ
where v0 and v1 are unknown functions of x and t. Here we recall that expansion (57) should not be interpreted
as a convergent mathematical series, but as a truncated formal expansion. Injecting (57) into system (56), we
find iteratively that v0 ¼ 0 and v1 ¼ �aðuÞ o

ox u for an arbitrary small value of �. Thus, as �! 0, variable v is
given by the following equation:
v ¼ ��aðuÞ o

ox
uþOð�2Þ ð58Þ
and the asymptotic limit of system (56) reads as
o

ot
u ¼ � o

ox
aðuÞ o

ox
u

� �
þOð�2Þ; ð59Þ
which is a nonlinear diffusion equation.

Example 1 (aðuÞ ¼ 1). We consider first the linear case aðuÞ ¼ 1. According to (59), as �! 0, system (56)
reduces to the well-known heat equation:
o

ot
u ¼ � o2

ox2
u; ð60Þ
where � plays the role of a (small) diffusion coefficient. Suppose that the domain of interest is x 2 R and that an
initial condition uðx; 0Þ ¼ u0ðxÞ is given. Then an analytical solution of Eq. (60) is known, namely the follow-
ing Green function:
uðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4p�t
p

Z þ1

�1
u0ðnÞe�

ðx�nÞ2
4�t dn: ð61Þ
We now solve the system (56) up to the final output time t ¼ 50 in the computational domain X ¼ � 1
2
; 1

2

� �
with

aðuÞ ¼ 1 using ADER-FV schemes from second to fifth order of accuracy on 100 cells. The local space–time
DG scheme for linear systems can be directly applied according to (46). We take a stiffness parameter of
� ¼ 10�4 and as initial condition we choose
u0ðxÞ ¼
1000 if x 6 0;

1 if x > 0:

�
ð62Þ
The boundary conditions are chosen to be transmissive. The analytical solution of the heat equation (60) with
the initial condition (62) is given in terms of the error function erfðxÞ at t ¼ 50 with � ¼ 10�4 as
uðx; 50Þ ¼ 1001

2
� 999

2
� erfð5

ffiffiffi
2
p

xÞ; ð63Þ
against which the numerical solutions will be compared. The Courant number is set in all computations to
CFL ¼ Dt=Dx ¼ 0:9. The final output time t ¼ 50 is quite large and is reached with the chosen combination
of mesh and Courant number after 5556 iterations. Hence, we expect that the low-order schemes will add more
spurious numerical diffusion in this test case compared to the high-order schemes since we compute a large
number of time steps. This conjecture is indeed confirmed by our numerical results that are depicted in
Fig. 2. We can see that generally all the schemes capture the exact reference solution (63) quite well. However,
the higher-order schemes produce better results than the lower-order methods. This means that even in the
diffusion limit of the stiff system (56) higher-order schemes may produce better results than lower-order meth-
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Fig. 2. Exact and numerical solutions obtained on 100 cells using ADER-FV schemes of second to fifth order of accuracy in space and
time for the model system with linear flux and stiff linear source ð� ¼ 10�4Þ at time t ¼ 50.

M. Dumbser et al. / Journal of Computational Physics 227 (2008) 3971–4001 3987
ods. We finally would like to emphasize that our numerical results have been obtained using a standard ex-

plicit one-step high-order finite volume scheme, where we only use a particular procedure in order to predict
the local time-evolution of the reconstructed polynomials. This is achieved via our new local space–time dis-
continuous Galerkin scheme proposed in this article. The rest of the finite volume scheme is standard.

Example 2 (aðuÞ ¼ uð1� uÞ). We now consider a special nonlinear case, namely aðuÞ ¼ uð1� uÞ. Hypothesis
aðuÞ > 0 is valid if and only if u 2�0; 1½. In this region, according to (59), as �! 0, system (56) reduces to the
following nonlinear diffusion equation:
o

ot
u ¼ � o

ox
uð1� uÞ o

ox
u

� �
: ð64Þ
Suppose that the domain of interest is X ¼ ½�0:5; 0:5� for a given L > 0, and that Neumann boundary condi-
tions o

ox u
� �

ð�0:5; tÞ ¼ o
ox u
� �

ð0:5; tÞ ¼ 0 are imposed 8t > 0. Then, for the initial condition we use8

uðx; 0Þ ¼

1�if x 6 0; where 1� ¼ lim
d!0

1� d;

0þif x > 0; where 0þ ¼ lim
d!0

d;

<
: ð65Þ
where for small d > 0, an analytical solution of Eq. (64) is known, namely
uðx; tÞ ¼ min 1;max 0;
1

2
1� xffiffiffiffi

�t
p

� �� �� �
: ð66Þ
We solve this test problem for d ¼ 10�6 with ADER-FV schemes of second, third and fifth order of accuracy
using 100 cells in the computational domain X up to time t ¼ 10 with � ¼ 10�3 and a Courant number of
CFL ¼ 0:25. The numerical results and the exact reference solution for the stiff limit are depicted in Fig. 3.
We note that all methods agree very well with the reference solution and that even in this case, with discon-
tinuities in the first derivative of the solution, we can clearly see an improvement with increasing order of
accuracy.
4.2. Model system with nonlinear flux and linear source term

We now consider the following class of nonlinear advection systems with linear relaxation:

o
ot uþ o

ox v ¼ 0;
o
ot vþ o

ox f ðuÞ ¼ � 1
�
v;

(
ð67Þ
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Fig. 3. Exact and numerical solutions obtained on 100 cells using ADER-FV schemes of second, third and fifth order of accuracy in space
and time for the model system with linear flux and stiff nonlinear source ð� ¼ 10�3Þ at time t ¼ 10.
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where � is a positive parameter and f ðuÞ is any given function which satisfies f 0ðuÞP 0 8u in the domain of
interest and does not depend on �. Injecting asymptotic expansion (57) into system (67), we find iteratively that
v0 ¼ 0 and v1 ¼ �f 0ðuÞ o

ox u for an arbitrary small value of �. Thus, as �! 0, variable v is given by the following
equation:
v ¼ ��f 0ðuÞ o

ox
uþOð�2Þ ð68Þ
and the asymptotic limit of system (67) reads as
o

ot
u ¼ � o

ox
f 0ðuÞ o

ox
u

� �
þOð�2Þ; ð69Þ
which is a nonlinear diffusion equation. Note that in the previous section, we had aðuÞ > 0, while here we have
f 0ðuÞP 0.

Example 3. f 0ðuÞ ¼ uð1� uÞ. We consider the special nonlinear case f 0ðuÞ ¼ uð1� uÞ, which leads to
f ðuÞ ¼ 1

2 u2 � 1
3 u3. The hypothesis f 0ðuÞ > 0 is verified if and only if u 2 ½0; 1�. In this region, according to (69),

as �! 0, system (67) reduces to the nonlinear diffusion Eq. (64). Suppose that the domain of interest is
x 2 ½�0:5; 0:5� for a given L > 0, and that Neumann boundary conditions o

ox u
� �

ð�0:5; tÞ ¼ o
ox u
� �

ð0:5; tÞ ¼ 0 are
imposed 8t > 0. Then, an analytical solution of Eq. (64) is (66), which is compatible with the initial condition:
uðx; 0Þ ¼
1� if x 6 0; where 1� ¼ lim

d!0
1� d;

0þ if x > 0; where 0þ ¼ lim
d!0

d:

8<
: ð70Þ
We solve this test problem for d ¼ 10�4 with ADER-FV schemes of second, third and fifth order of accuracy
using 100 cells in the computational domain X up to time t ¼ 10 with � ¼ 10�3 and a Courant number of
CFL ¼ 0:25. The numerical results and the exact reference solution for the stiff limit are depicted in Fig. 4.
As in the previous test problem, all methods agree again very well with the reference solution and an improve-
ment with increasing order of accuracy is also visible.
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Fig. 4. Exact and numerical solutions obtained on 100 cells using ADER-FV schemes of second, third and fifth order of accuracy in space
and time for the model system with nonlinear flux and stiff linear source ð� ¼ 10�3Þ at time t ¼ 10.
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4.3. Euler equations with stiff friction

In this section, we apply our method to the Euler equations of compressible gas dynamics with stiff friction.
The full Euler system with friction reads as (6) with the vector of conservative variables u, the flux fðuÞ and the
(stiff) source term SðuÞ as
u ¼
q

qu

qE

0
B@

1
CA; fðuÞ ¼

qu

qu2 þ p

uðqE þ pÞ

0
B@

1
CA; SðuÞ ¼ �m

0

qu

qu2

0
B@

1
CA: ð71Þ
The system still needs to be closed by an equation of state (EOS) of the form p ¼ pðuÞ. For the following
numerical calculations we consider a computational domain X ¼ ½0; 1� with the Dirichlet boundary conditions
uð0; tÞ ¼ uð0; 0Þ and uð1; tÞ ¼ uð1; 0Þ and the initial condition
uðx; 0Þ ¼
ð1:65; 0; 5:039849068Þ if x 6 0:25;

ð0:01; 0; 0:003962233Þ if x > 0:25:

�
ð72Þ
For the stiffness parameter m we take
mðx; tÞ ¼
0 if x 6 0:25;

1500 if x > 0:25;

�
ð73Þ
which means that we solve the Euler equations without any friction in the left quarter of X ðx 2 ½0; 0:25�Þ and
with stiff friction in the region x 2 ½0:25; 1�. This setup corresponds to an interface of an inviscid compressible
gas with a porous medium into which the gas may penetrate. For all the following computations we set the
Courant number to CFL ¼ 0:9.

4.3.1. Isentropic Euler system with stiff friction

Under the assumption that the flow is completely isentropic, we can write the equation of state as
pðuÞ ¼ kqc: ð74Þ

In this case, the pressure does not depend on the total energy qE and thus the energy equation in (6) and (71)
can be omitted. We set k ¼ 1 and c ¼ 1:4. We solve (6) with (71) and the EOS (74) up to t ¼ 2:0 using 100 cells
and ADER-FV schemes from second to fourth order of accuracy. The reference solution is computed with a
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second-order ADER-FV scheme on 10,000 cells. The results are depicted in Fig. 5(a). We clearly see that on a
fixed grid the diffusion limit of the Euler equations is captured better by the higher-order schemes. Although
the results of the second-order method are still of acceptable accuracy, we nevertheless observe that the sec-
ond-order method adds too much numerical diffusion. A very similar test case has previously been proposed
by Bouchut et al. [6]. Unfortunately they did not specify all parameters of their test problem. Especially, the
initial and boundary conditions were not given, so it was not possible to compute exactly the same test case.
However, the results are qualitatively similar compared to ours.

4.3.2. Full Euler system with stiff friction

Using the ideal gas law, the equation of state reads as
a

Fig. 5.
fourth
with id
pðuÞ ¼ ðc� 1Þ qE � 1

2
qu2

� �
; ð75Þ
where c ¼ 1:4. In this case, we must consider the full Euler system including the energy equation. In the initial
condition (72) the total energy qE is chosen such that the pressure according to (75) is equal to the pressure
obtained in the isentropic case from Eq. (74). We therefore expect the results to be very similar to the previous
ones. Hence, we solve (6) with (71) and the EOS (75) up to t ¼ 2:0 using the initial condition (72). The com-
putational domain is discretized with 100 cells using ADER-FV schemes from second to fourth order of accu-
racy. The reference solution is computed again with a second-order ADER-FV scheme on 10,000 cells. The
results are depicted in Fig. 5(b). Similar to the isentropic case, we observe that also the diffusion limit of
the full Euler equations is captured better by the higher-order schemes.

We finally would like to remark that even some first-order numerical methods designed for stiff systems of
balance laws may encounter problems with this test case for the full Euler equations since they may produce
negative values for the total energy qE.

4.4. The relaxation system of Jin and Xin

The relaxation system of Jin and Xin [37] reads as follows:
o
ot uþ o

ox v ¼ 0;
o
ot vþ A o

ox u ¼ � 1
�
ðv� fðuÞÞ;

(
ð76Þ
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Reference solution and numerical solutions at time t ¼ 2 obtained on 100 cells using ADER-FV schemes of second, third and
order of accuracy in space and time for the Euler system with stiff friction. (a) Isentropic Euler system (left) and (b) full Euler system
eal gas EOS (right).
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where fðuÞ is a given function, � is a positive arbitrarily small parameter and A is a constant matrix. The advec-
tion part of this system is linear, while the relaxation part is not linear in general, due to the presence of fðuÞ. It
is easy to check that the asymptotic limit of system (76) is
Table
Initial
the rel

Case

1
2
3
4
5
6

o

ot
uþ o

ox
fðuÞ ¼ � o

ox
ðA� J 2ðuÞÞ o

ox
u

� �
; ð77Þ
where J ¼ of
ou

. System (77) is a hyperbolic system of conservation laws with nonlinear diffusion if and only if
A P J 2ðuÞ 8u: ð78Þ

We now apply our proposed ADER finite volume schemes for hyperbolic systems with stiff source terms to the
relaxation system of Jin and Xin with the following definitions of the vector u and the flux function fðuÞ
appearing in the source term:
u ¼ ðq; qu; qEÞ; fðuÞ ¼ ðqu;qu2 þ p; uðqE þ pÞÞ ð79Þ

with the equation of state that closes the system
p ¼ ðc� 1Þ qE � 1

2
qu2

� �
: ð80Þ
With this choice Eq. (76) converges to the compressible Euler equations in the stiff limit. The stiffness param-
eter m ¼ 1=� is set in all the following test cases to m ¼ 1012, which leads to a very stiff source term. The matrix
A is chosen to be the simple diagonal matrix A ¼ diagðam; am; amÞ, which is kept constant in space and time.

4.4.1. Shock tube problems
We consider initial value problems for (76) where the initial condition for u has the form
uðx; 0Þ ¼
ðqL; ðquÞL; ðqEÞLÞ if x 6 xc;

ðqR; ðquÞR; ðqEÞRÞ if x > xc:

�
ð81Þ
The initial condition for v is simply vðx; 0Þ ¼ 0 and we use Dirichlet boundary conditions that are consistent
with the initial condition. For the Euler equations of compressible gas dynamics the exact solution of those
Riemann problems can be computed analytically and will serve in the following for validation of our numer-
ical method when applied to the relaxation system of Jin and Xin. We compute the solution of the initial value
problem (76) and (81) using second- to fourth-order ADER-FV schemes for six different cases of shock tube
problems. All initial conditions as well as the final output times tend and the initial position of the discontinuity
xc are listed in Table 3. The values am defining the matrix A are given for each test case in Table 4. For all
computations we use a constant Courant number of CFL ¼ 0:75. The exact solution and the numerical solu-
tions obtained by our proposed method are shown for all six shock tube problems in Figs. 6–8, where also the
number of mesh cells is indicated. For most of the test cases we note an excellent agreement with the exact
solution and most of the numerical solutions are monotone, thanks to the nonlinear WENO reconstruction
procedure. We note that the reconstruction is done in the characteristic variables of the compressible Euler
equations and not in the characteristic variables of the advection operator of the relaxation system of Jin
and Xin. This is necessary to suppress unphysical oscillations. Using this particular characteristic reconstruc-
tion, small spurious oscillations are only visible for shock tube problems number two and four. We note that
3
states left and right, simulation end times and initial position xc of the discontinuity for the 1D shock tube problems computed with
axation system of Jin and Xin

qL uL pL qR uR pR tend xc

1.0 0.75 1.0 0.125 0.0 0.1 0.20 0.5
1.0 �2.0 0.4 1.0 2.0 0.4 0.15 0.5
0.445 0.698 3.528 0.5 0.0 0.571 0.14 0.5
5.99924 19.5975 460.895 5.99242 �6.19633 46.0950 0.035 0.4
1.0 0.0 1000 1.0 0.0 0.01 0.012 0.5
1.0 �19.59745 1000 1.0 �19.59745 0.01 0.012 0.8



Table 4
Entries am of the diagonal matrix A for the 1D shock tube problems

Case 1 2 3 4 5 6

am 7 12 12 900 1500 9000
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Fig. 6. Exact and numerical solutions for shock tube problems number one (left) and two (right), obtained with the relaxation system of
Jin and Xin on 100 cells.
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Fig. 7. Exact and numerical solutions for shock tube problems number three (left) and four (right), obtained with the relaxation system of
Jin and Xin on 100 cells.
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these test cases can be even difficult to compute with standard high-order finite volume schemes for the
compressible Euler equations. Much more numerical difficulties arise in the relaxation system of Jin and
Xin due to the very stiff source term. However, the numerical results confirm that our method produces essen-
tially non-oscillatory results, maintains high accuracy even for hyperbolic systems with stiff source terms and
has the correct behaviour in the stiff limit.
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Fig. 8. Exact and numerical solutions for shock tube problems number five (left) and six (right), obtained with the relaxation system of Jin
and Xin on 200 cells.
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4.4.2. Shock–density interaction

We now consider a test problem proposed originally by Shu and Osher [56] for the compressible Euler
equations in the more general framework of the stiff relaxation system of Jin and Xin (76) in order to show
the advantages of high-order methods. We emphasize that for this test case we solve the stiff relaxation system
of Jin and Xin (76) and not the classical Euler equations of compressible gas dynamics. The computational
domain is X ¼ ½�5; 5� and the initial condition for u is given by
Fig. 9.
system
ðq; u; pÞðx; 0Þ ¼
ð3:8571; 2:6294; 10:333Þ if x < �4;

ð1þ 0:2 sinð5xÞ; 0; 1Þ if x P �4:

�
ð82Þ
Dirichlet boundaries consistent with the initial condition are imposed. Furthermore we set vðx; 0Þ ¼ 0. This
leads to a shock wave with Mach number M ¼ 3 running into the sinusoidal density fluctuation. The interaction
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Reference solution and numerical solutions at t ¼ 1:8 for the shock–density interaction test case obtained with the relaxation
of Jin and Xin on 400 cells using ADER-FV schemes of second, third and fourth order of accuracy.
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of the shock with the density fluctuation generates sound waves and high-frequency entropy fluctuations that
are very difficult to capture with low-order schemes on coarse meshes. In Fig. 9, we show the numerical results
obtained with ADER-FV schemes from second to fourth order of accuracy on 400 cells at the final output
time t ¼ 1:8. We choose am ¼ 25 and a Courant number of CFL ¼ 0:75.

One can clearly see that the second-order method is not at all able to resolve the high frequency entropy
waves. The third-order scheme already resolves the whole frequency content but is still too dissipative since
the amplitudes of the entropy waves are not yet captured, see Fig. 9 on the left. Only the fourth-order scheme
is able to resolve the whole solution quite well on this relatively coarse mesh, see Fig. 9 on the right. The ref-
erence solution was computed using a second-order TVD finite volume scheme for the compressible Euler
equations on 10,000 cells.

4.5. The scalar model problem of LeVeque and Yee

The model problem proposed by LeVeque and Yee [41] is a scalar linear advection problem with a nonlin-
ear reaction source term, which can be stiff. The governing PDE reads as
o

ot
uþ o

ox
u ¼ �mu u� 1ð Þ u� 1

2

� �
; ð83Þ
where m is a given positive coefficient. The computational domain is X ¼ ½0; 1� with transmissive boundary con-
ditions. The following initial condition is considered:
uðx; 0Þ ¼
1 if x 6 0:3;

0 if x > 0:3:

�
ð84Þ
With this particular initial condition, the source term is zero. Thus, an analytical solution of problem (83) and
(84) is known, namely: uðx; tÞ ¼ uðx� t; 0Þ, which means that the initial profile of u is advected with constant
speed 1. LeVeque and Yee have pointed out that neither a Mac Cormack predictor–corrector method, nor a
Strang splitting method give the physically correct advection speed in the stiff case. We further note that also
standard ADER finite volume schemes [65,60] using the usual Cauchy–Kovalewski procedure instead of the
proposed local space–time discontinuous Galerkin scheme to compute uiðn; sÞ from the reconstructed polyno-
mials wiðn; tnÞ are not able to solve this problem since they cannot handle stiff source terms. Following LeVe-
que and Yee we now solve the above mentioned test problem up to t ¼ 0:3 using 100 cells and a Courant
number of CFL ¼ 0:75, taking the following values for the stiffness parameter: m ¼ 1, m ¼ 10, m ¼ 100,
m ¼ 1000. The numerical results obtained with our new ADER-FV schemes from second to sixth order of
accuracy are depicted in Fig. 10 for the non-stiff as well as for the stiff cases. We note an excellent agreement
with the exact solution in all cases. In particular, the advection speed of a ¼ 1 seems to be captured correctly.
Furthermore, we can clearly see that our numerical solution is essentially non-oscillatory and that the resolu-
tion of the discontinuity is improved in the non-stiff case when using higher-order schemes. For the stiff case,
we observe less numerical diffusion than in the non-stiff case. This is due to the reaction source term, which has
two stable equilibrium solutions at u ¼ 0 and at u ¼ 1. Any numerical dissipation generated by the numerical
scheme will lead to a smearing of the discontinuity and will subsequently lead to intermediate values of u that
do not correspond to either of the stable equilibria. The stiff reaction source term will immediately try to push
the solution back towards the closest equilibrium, which in the end leads to a generally sharper profile for the
stiff case compared to the non-stiff case. The fact that we obtain the correct propagation speed can be probably
explained by the following reasoning: It has been reported in the literature that numerical problems induced
by stiff reaction source terms can be cured using high resolution methods together with either locally refined
meshes via an AMR technique or front tracking approaches, see e.g. [29,40,7]. Instead of these techniques we
are using for this test case throughout very high-order accurate numerical methods that exhibit generally only
few numerical diffusion. Furthermore, the proposed one-step time discretization allows us to use the nonlinear
WENO reconstruction operator, which induces a certain amount of extra numerical diffusion compared to a
non-monotone reconstruction, only once per time-step. According to previous publications on ADER and
Lax–Wendroff type one-step time discretizations for WENO and DG schemes this results in less numerical
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Fig. 10. Exact solution and numerical solutions for the model problem of LeVeque and Yee at t ¼ 0:3 using 100 cells for the non-stiff case
(top row) and the stiff case (bottom row). m ¼ 1 (top left), m ¼ 10 (top right), m ¼ 100 (bottom left), m ¼ 1000 (bottom right).
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diffusion compared to classical TVD Runge–Kutta type time discretizations for WENO and DG schemes
[15,53,52,60,59]. Another feature of our particular time discretization is the fact that the flux and the source
term are intrinsically coupled within the local space–time DG scheme. Via this approach, the influence of the
source term is present in the numerical flux function as well as the influence of the convection is present in the
numerical source term.

5. Summary and conclusions

In this article, we have developed a new explicit unsplit essentially non-oscillatory one-step finite volume
scheme of arbitrary high order of accuracy in space and time for nonlinear hyperbolic systems with stiff source
terms. In continuity with previous work of the authors on schemes of arbitrary high order of accuracy in space
and time, we call our new method also ADER (arbitrary high-order derivatives) finite volume scheme. The
spatial reconstruction polynomials obtained from the particular WENO reconstruction operator are used
as initial conditions for the proposed local space–time discontinuous Galerkin scheme which solves an initial
value problem for the governing PDE locally inside each element without considering the neighboring ele-
ments. The local space–time DG scheme leads in general to a local system of nonlinear equations that has
to be solved individually for each element. In this article, we use a standard globally convergent Newton algo-
rithm [51] to solve the problem in the nonlinear case. As initial guess we solve an associated linear problem
after linearization of the governing PDE. We emphasize that the local space–time DG scheme is the only
locally implicit part appearing in the proposed ADER-FV schemes. The resulting ADER finite volume
scheme, built upon the solution of the local space–time DG scheme, is then completely explicit. Compared
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to previous ADER-FV schemes for hyperbolic systems with non-stiff source terms, the new local space–time
DG scheme has replaced the usual Cauchy–Kovalewski procedure, which is not able to treat stiff problems.
The rest of the scheme remains the same.

We have shown via formal asymptotic expansions that the new local space–time DG scheme is able to cap-
ture correctly the stiff limit in the case of a linear scalar PDE with stiff source term and that it is also asymp-
totic preserving (AP) for the case of a stiff linear two-equation model system.

Numerical convergence studies for our proposed method have been carried out up to sixth order of accu-
racy in space and time for a nonlinear hyperbolic system with source terms. A non-stiff case and also a very
stiff case have been considered. The ADER-FV schemes then have been applied to several stiff linear and non-
linear model systems. In all the cases our schemes were able to capture very well the stiff limit of these equa-
tions and to maintain also the monotonicity of the solution, even using schemes of very high order of
accuracy. Usually, the results obtained with the higher-order schemes were better than the results obtained
with the lower-order methods, even for test problems with discontinuities in the state or in the derivatives.
We emphasize that for all test cases the time step was only restricted by the standard CFL stability condition
based on the flux and not by the stiffness of the source term.

At this point, we would like to summarize the advantages and the disadvantages of our proposed ADER-
FV scheme for hyperbolic systems with stiff source terms. Among the clear advantages of our scheme is the
fact that it can reach any desired order of accuracy greater or equal two in space and time simultaneously.
To our knowledge, this has not yet been achieved by any other numerical method for hyperbolic systems with
stiff source terms. Furthermore, the unsplit finite volume discretization (9) mimics the underlying physics of
the governing equation since it is based directly on an integral formulation of the governing PDE (6). The
same is true for the (also unsplit) local space–time DG scheme, which directly solves a weak formulation
of the local initial value problem (6) in space–time. Since the local space–time DG scheme can be solved indi-
vidually for each element Qi we suppose that for this particular purpose it is easier to solve than a classical
globally implicit space–time DG scheme [66] that must take into account all Qi 2 X. Numerical evidence
has shown that our scheme seems to be consistent with the stiff limit of the governing PDE for a large number
of test problems. However, a clear disadvantage of our proposed method is the high computational effort asso-
ciated with the Newton algorithm that has to be used in the case of nonlinear systems. Compared to the rest of
the algorithm, the Newton solver is by far the most expensive part of the scheme. Future work has to be done
to make the Newton algorithm for the nonlinear case more efficient and robust. Other, more advanced, tech-
niques can be tried in the future such as inexact Newton solvers based on GMRES with appropriate precon-
ditioning. Seen from a theoretical point of view, another disadvantage of our scheme may be the fact that the
first-order version of the method does not work since it does not provide the correct coupling of source terms
and fluxes which only comes in via a higher-order discretization in space and time.

Further extensions and applications of the proposed ADER-FV schemes for stiff problems will concern the
extension to multiple space dimensions and the application to two-fluid flow. Of particular interest will be the
application to colliding plasma flows with stiff friction and temperature relaxation. Further applications may
also involve chemically reacting flows.
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Appendix A. Reconstruction basis functions

The rescaled Legendre polynomials, which constitute an orthogonal basis on the unit interval I ¼ ½0; 1�, are
given up to polynomial degree M ¼ 5 by
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W0ðnÞ ¼ 1;

W1ðnÞ ¼ 2n� 1;

W2ðnÞ ¼ 6n2 � 6nþ 1;

W3ðnÞ ¼ 20n3 � 30n2 þ 12n� 1;

W4ðnÞ ¼ 70n4 � 140n3 þ 90n2 � 20nþ 1;

W5ðnÞ ¼ 252n5 � 630n4 þ 560n3 � 210n2 þ 30n� 1:

ðA:1Þ
Appendix B. Mass-, flux- and stiffness matrices for the local space–time DG method for the linear case

For polynomial degree M ¼ 1, the mass matrix Mkl and the time flux matrices F 0
kl and F 1

kl of the local
space–time discontinuous Galerkin scheme are
Mkl ¼

1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1
9

0
BBB@

1
CCCA; F 0

kl ¼

1 0

0 1
3

�1 0

0 � 1
3

0
BBB@

1
CCCA; F 1

kl ¼

1 0 1 0

0 1
3

0 1
3

1 0 1 0

0 1
3

0 1
3

0
BBB@

1
CCCA ðB:1Þ
and the temporal and spatial stiffness matrices Ks
kl and Kn

kl are given by
Ks
kl ¼

0 0 0 0

0 0 0 0

2 0 0 0

0 2
3

0 0

0
BBB@

1
CCCA; Kn

kl ¼

0 2 0 0

0 0 0 0

0 0 0 2
3

0 0 0 0

0
BBB@

1
CCCA: ðB:2Þ
For polynomial degree M ¼ 2, these matrices become
Mkl ¼

1 0 0 0 0 0 0 0 0

0 1
3

0 0 0 0 0 0 0

0 0 1
5

0 0 0 0 0 0

0 0 0 1
3

0 0 0 0 0

0 0 0 0 1
9

0 0 0 0

0 0 0 0 0 1
15

0 0 0

0 0 0 0 0 0 1
5

0 0

0 0 0 0 0 0 0 1
15

0

0 0 0 0 0 0 0 0 1
25

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; ðB:3Þ

F 0
kl ¼

1 0 0

0 1
3

0

0 0 1
5

�1 0 0

0 � 1
3

0

0 0 � 1
5

1 0 0

0 1
3

0

0 0 1
5

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; F 1
kl ¼

1 0 0 1 0 0 1 0 0

0 1
3

0 0 1
3

0 0 1
3

0

0 0 1
5

0 0 1
5

0 0 1
5

1 0 0 1 0 0 1 0 0

0 1
3

0 0 1
3

0 0 1
3

0

0 0 1
5

0 0 1
5

0 0 1
5

1 0 0 1 0 0 1 0 0

0 1
3

0 0 1
3

0 0 1
3

0

0 0 1
5

0 0 1
5

0 0 1
5

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; ðB:4Þ
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Ks
kl ¼

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

0 2
3

0 0 0 0 0 0 0

0 0 2
5

0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 2
3

0 0 0 0

0 0 0 0 0 2
5

0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; Kn
kl ¼

0 2 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 2
3

0 0 0 0

0 0 0 0 0 2
3

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2
5

0

0 0 0 0 0 0 0 0 2
5

0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ðB:5Þ
Appendix C. Asymptotic preserving property of the local space–time DG scheme

In this appendix, we show that the local space–time discontinuous Galerkin scheme (46) when applied to
the linear system (56) has the correct behaviour in the stiff limit, i.e. that it has the so-called asymptotic pre-
serving (AP) property, see [34,23]. We therefore apply the scheme (46) to the system (56) with uh 2 V h, vh 2 V h,
aðuÞ ¼ 1 and the small positive parameter � ¼ 1=m > 0:
½Uk; uh�tnþ1 � ½Uk;wu�tn �
o

ot
Uk; uh

� �
þ Uk;

o

ox
vh

� �
¼ 0;

½Uk; vh�tnþ1 � ½Uk;wv�tn �
o

ot
Uk; vh

� �
þ Uk;

o

ox
uh

� �
¼ � 1

�
U; vhh i:

ðC:1Þ
Here, wu and wv denote the reconstruction polynomials at time tn for the variables u and v, respectively, and
the scalar products ½f ; g�s and hf ; gi are supposed to be computed in physical space. Let now ud 2 V h be the
discrete solution of the local space–time DG scheme applied to the linear heat equation (60), which is the
asymptotic limit of (56) for �! 0:
½Uk; ud �tnþ1 � ½Uk;wu�tn �
o

ot
Uk; ud

� �
¼ � Uk;

o
2

ox2
ud

� �
: ðC:2Þ
Eq. (C.2) only makes sense for at least piecewise quadratic approximations. Under this assumption on V h we
will show that uh ! ud for �! 0. This is done using an asymptotic expansion of the discrete solution vh as
vh ¼ v0 þ �1v1 þ �2v2 þOð�3Þ ðC:3Þ

with v0 2 V h, v1 2 V h and v2 2 V h.

Inserting (C.3) into (C.1) and retaining only terms up to power �1 yields
½Uk; uh�tnþ1 � ½Uk;wu�tn �
o

ot
Uk; uh

� �
þ Uk;

o

ox
ðv0 þ �v1Þ

� �
¼ 0;

½Uk; v0 þ �v1�tnþ1 � ½Uk;wv�tn �
o

ot
Uk; v0 þ �v1

� �
þ Uk;

o

ox
uh

� �
¼ � 1

�
Uk; v0 þ �v1 þ �2v2

	 

8Uk 2 V h:

ðC:4Þ

In (C.4), the leading power ��1 yields the condition
hUk; v0i ¼ 0 8Uk 2 V h: ðC:5Þ

Since Uk 2 V h and v0 2 V h, we obtain immediately the result
v0 ¼ 0: ðC:6Þ

This condition is necessary to obtain a bounded solution for vh. The terms of order �0 in (C.4) yield together
with (C.6) the condition
Uk;
o

ox
uh

� �
� ½Uk;wv�0 ¼ �hUk; v1i 8Uk 2 V h: ðC:7Þ
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Since v0 ¼ 0, the numerical solution vh is of the order Oð�Þ, even if the initial condition wv was of the order
Oð1Þ. If we suppose to do at least two time-steps of the local space–time DG scheme, where the initial con-
dition of the second time step is given by the boundary extrapolated data at local time s ¼ 1 of the first time
step, we can suppose wv to be of the order Oð�Þ and neglect it in (C.7) to obtain
Uk;
o

ox
uh

� �
¼ � Uk; v1h i 8Uk 2 V h: ðC:8Þ
Since uh 2 V h, Uk 2 V h and v1 2 V h, we also obtain the relation
Uk;
o

2

ox2
uh

� �
¼ � Uk;

o

ox
v1

� �
8Uk 2 V h; ðC:9Þ
which is non-trivial only for polynomials of degree greater or equal two. Using (C.9), (C.3) and (C.6) we then
obtain from (C.4) the equation
½Uk; uh�tnþ1 � ½Uk;wu�tn �
o

ot
Uk; uh

� �
¼ � Uk;

o2

ox2
uh

� �
; ðC:10Þ
which is the same weak form of the local space–time DG scheme as derived directly for the diffusion equation
(C.2). Hence, the formal asymptotic expansion of the local space–time DG scheme shows us that it has the AP
property in the sense of [34] for polynomial approximation spaces of degree greater or equal two.
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[14] M. Dumbser, M. Käser, Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic
systems, Journal of Computational Physics 221 (2007) 693–723.

[15] M. Dumbser, M. Käser, V.A. Titarev, E.F. Toro, Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for
nonlinear hyperbolic systems, Journal of Computational Physics 226 (2007) 204–243.

[16] M. Dumbser, C.D. Munz, Building blocks for arbitrary high order discontinuous Galerkin schemes, Journal of Scientific Computing
27 (2006) 215–230.

[17] M. Dumbser, T. Schwartzkopff, C.D. Munz, Arbitrary high order finite volume schemes for linear wave propagation, in:
Computational Science and High Performance Computing II, Notes on Numerical Fluid Mechanics and Multidisciplinary Design
(NNFM), Springer-Verlag, Berlin, Heidelberg, 2006, pp. 129–144.



4000 M. Dumbser et al. / Journal of Computational Physics 227 (2008) 3971–4001
[18] B. Einfeldt, On Godunov-type methods for gas dynamics, SIAM Journal on Numerical Analysis 25 (1988) 294–318.
[19] B. Einfeldt, C.D. Munz, P.L. Roe, B. Sjgreen, On Godunov-type methods near low densities, Journal of Computational Physics 92

(1991) 273–295.
[20] B. Engquist, S. Osher, One sided difference approximations for nonlinear conservation laws, Mathematics of Computation 36 (1981)

321–351.
[21] J. Glimm, G. Marshall, B. Plohr, A generalized Riemann problem for quasi-one-dimensional gas flows, Advances in Applied

Mathematics 5 (1984) 1–30.
[22] S.K. Godunov, Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics,

Mathematics of the USSR. Sbornik 47 (1959) 271–306.
[23] F. Golse, S. Jin, C.D. Levermore, The convergence of numerical transfer schemes in diffusive regimes. I: The discrete-ordinate

method, SIAM Journal on Numerical Analysis 36 (1999) 1333–1369.
[24] L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms,

Computers and Mathematics with Applications 39 (2000) 135–159.
[25] L. Gosse, G. Toscani, Asymptotic-preserving and well-balanced schemes for radiative transfer and the Rosseland approximation,

Numerische Mathematik 98 (2) (2004) 223–250.
[26] J.M. Greenberg, A.Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM

Journal on Numerical Analysis 33 (1) (1996) 1–16.
[27] A. Harten, B. Engquist, S. Osher, S. Chakravarthy, Uniformly high order essentially non-oscillatory schemes, III, Journal of

Computational Physics 71 (1987) 231–303.
[28] A. Harten, P.D. Lax, B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM

Review 25 (1) (1983) 35–61.
[29] C. Helzel, R.J. LeVeque, G. Warnecke, Modified fractional step method for the accurate approximation of detonation waves, SIAM

Journal on Scientific Computing 22 (2000) 1489–1510.
[30] L. Hsiao, T.P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,

Communications in Mathematical Physics 143 (1992) 599–605.
[31] F. Huang, P. Marcati, R. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and

vacuum, Archive for Rational Mechanics and Analysis 176 (2005) 1–24.
[32] G.-S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics (1996) 202–228.
[33] S. Jin, Runge–Kutta methods for hyperbolic conservation laws with stiff relaxation terms, Journal of Computational Physics 122 (1)

(1995) 51–67.
[34] S. Jin, Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations, SIAM Journal on Scientific Computing 21

(1999) 441–454.
[35] S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, Mathematical Modelling and

Numerical Analysis 35 (4) (2001) 631–645.
[36] S. Jin, C.D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms, Journal of Computational

Physics 126 (2) (1996) 449–467.
[37] S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and

Applied Mathematics 48 (1995) 235–277.
[38] P. LeFloch, P.A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem, Part I: general theory,

Annales de l’Institut Henri Poincaré 5 (2) (1988) 179–207.
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